Recognition and translation Arabic-French of Named Entities: case of the Sport places

نویسندگان

  • Abdelmajid Ben Hamadou
  • Odile Piton
  • Héla Fehri
چکیده

The recognition of Arabic Named Entities (NE) is a problem in different domains of Natural Language Processing (NLP) like automatic translation. Indeed, NE translation allows the access to multilingual information. This translation doesn’t always lead to expected result especially when NE contains a person name. For this reason and in order to ameliorate translation, we can transliterate some part of NE. In this context, we propose a method that integrates translation and transliteration together. We used the linguistic NooJ platform that is based on local grammars and transducers. In this paper, we focus on sport domain. We will firstly suggest a refinement of the typological model presented at the MUC Conferences we will describe the integration of an Arabic transliteration module into translation system. Finally, we will detail our method and give the results of the evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهبود شناسایی موجودیت‌های نامدار فارسی با استفاده از کسره اضافه

Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...

متن کامل

تشخیص اسامی اشخاص با استفاده از تزریق کلمه‌های نامزد اسم در میدان‌های تصادفی شرطی برای زبان عربی

Named Entity Recognition and Extraction are very important tasks for discovering proper names including persons, locations, date, and time, inside electronic textual resources. Accurate named entity recognition system is an essential utility to resolve fundamental problems in question answering systems, summary extraction, information retrieval and extraction, machine translation, video interpr...

متن کامل

Improved Statistical Machine Translation by Cross-Linguistic Projection of Named Entities Recognition and Translation

One of the existing difficulties in natural lan­ guage processing applications is the lack of appropri­ ate tools for the recognition, translation, and/or translit­ eration of named entities (NEs), specifically for lessresourced languages. In this paper, we propose a new method to automatically label multilingual parallel data for Arabic-French pair of languages with named entity tags and build...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

Repérage des entités nommées pour l'arabe : adaptation non-supervisée et combinaison de systèmes (Named Entity Recognition for Arabic : Unsupervised adaptation and Systems combination) [in French]

Named Entity Recognition for Arabic : Unsupervised adaptation and Systems combination The recognition of Arabic Named Entities (NE) is a potentially useful preprocessing step for many Natural Language Processing Applications, such as Machine Translation. This task is however made very complex by some peculiarities of the Arabic language. In this paper, we present a summary of our recent efforts...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1002.0481  شماره 

صفحات  -

تاریخ انتشار 2010